

Network: A Multiprocessor Program∗

(1978)

This paper explores the problems of implementing arbitrary forms of process

communication on a multiprocessor network. It develops a Concurrent Pascal

program that enables distributed processes to communicate on virtual chan-

nels. The channels cannot deadlock and will deliver all messages within a finite

time. The operation, structure, text, and performance of this program are de-

scribed. It was written, tested, and described in two weeks and it worked

immediately.

1 Introduction

As an industrial programmer, I discovered that real-time applications require
a much greater variety of process interactions than any “general-purpose”
operating system can support. This experience led to the development of
Concurrent Pascal—a programming language that makes it possible to im-
plement arbitrary forms of process communication and resource scheduling
by means of monitors (Brinch Hansen 1973, 1975; Hoare 1974).

Concurrent Pascal has been available on the PDP 11/45 computer since
January 1975. It has been used to write three model operating systems for a
single processor (Brinch Hansen 1976, 1977a, 1977b). This paper describes
the first Concurrent Pascal program that controls process communication in
a multiprocessor network.

The Network program enables distributed processes to communicate on
virtual channels. These channels cannot deadlock and will deliver all mes-
sages within a finite time. The paper describes the operation, structure, text,
and performance of this program. It was written, tested, and described in
two weeks and it worked immediately.

∗P. Brinch Hansen, Network: A multiprocessor program, IEEE Transactions on Soft-
ware Engineering 4, 3 (May 1978), 194–199. Copyright c© 1978, Institute of Electrical and
Electronics Engineers, Inc.

1

2 PER BRINCH HANSEN

2 Multiprocessor System

The multiprocessor system consists of a fixed number of processor nodes
connected cyclically by unidirectional bus links (Fig. 1). Each node can
receive input from its predecessor on one bus link and can send output to its
successor on another bus link. An output operation in one node is delayed
until its neighbor starts an input operation on the same bus link, and vice
versa. (It is a sad comment on the complexity of the hardware that 500
words of machine code had to be added to the Concurrent Pascal kernel to
implement these simple input/output operations.)

m m m
m m
m m m
6

6

- -

?

?
��

Figure 1 Data flow between processors
connected by bus links.

The Network program assumes optimistically that the hardware works
correctly.

3 Virtual Channels

The program uses the bus links to implement a fixed number of virtual
channels connecting a fixed number of processes (Fig. 2). Each channel can
transmit one data item at a time from a single sender process to a single
receiver process. The sender and receiver processes of a channel may reside
in the same or in different network nodes. The distribution of processes
among the nodes and the connection of these processes by channels is fixed
during program initialization. The restriction of one sender and one receiver
per channel is assumed but is not enforced by the program.

Figure 3 shows an example of four processes A, B, C, and D connected
by channels 1, 2, 3, and 4. Process A produces input for processes B and C

NETWORK: A MULTIPROCESSOR PROGRAM 3

which, in turn, deliver output to process D. This abstract process configu-
ration can be distributed in several ways. Figure 4 shows one possibility.

m m
m m
m m

-

-

-

SENDERS CHANNELS RECEIVERS

Figure 2 Data flow between processes
connected by virtual channels.

m m
m

m
�
�
���

�
�
���@

@
@@R

@
@
@@R

A

B

C

D

1

2

3

4

Figure 3 An example of processes
connected by channels.

The Network program implements two operations

send(channel, item) receive(channel, item)

A send operation on a channel delays the calling process until another process
performs a receive operation on the same channel, and vice versa.

4 PER BRINCH HANSEN

m m

m m-

-

? ?

A B

C D

NODE 1 NODE 2

Figure 4 An example of a process distribution
in a network with two nodes.

4 Network Operation

When two processes communicate on a virtual channel, the receiving node
transmits a request to the sending node which then responds by transmitting
a data item on the network (Fig. 5). So a transmission on the network causes
a message to pass through all nodes once. The message begins as a request
and ends as a response.

Transmission only takes place when a receiver is waiting for a message.
Since each channel has only one receiver, it follows that each channel can
transmit only one message at a time.

Each node is a first-come, first-served queuing system with a finite buffer
capacity. A node receives input both from itself and its predecessor. The
node accepts some of these messages as input to itself and outputs the rest
to the next node (Fig. 6).

As long as its buffer is not full, a node will continue to receive input
from itself and its predecessor in fair order. As long as a node is not delayed
indefinitely by its successor, it will continue to output messages from its
buffer in fair order (first come, first served).

5 Network Properties

The network has several pleasant properties:

NETWORK: A MULTIPROCESSOR PROGRAM 5

m m m
m m
m m m
6

6

- -

?

?
��

6

6 RECEIVE

SEND

RESPONSE REQUEST

Figure 5 Transmission of a request
and a response on the network.

m- - -
?

?

INPUT

LINK BUFFER

OUTPUT

LINK

Figure 6 A network node viewed as a queuing system.

1. No transmission takes place unless it is requested. This means that the
network only consumes machine time when processes are using it.

2. Messages are never discarded due to buffer overflow. A message cannot
be sent until a process has provided a variable in which it can be stored
and is waiting to receive it.

3. The network cannot deadlock. Each channel can transmit only one
message at a time. If there are more buffer slots than channels in the
network there will always be one or more empty buffer slots somewhere.
So when there are messages on the net, at least one of the nodes will

6 PER BRINCH HANSEN

always be able to receive a message from its predecessor and move it
forwards towards its destination within a finite time.

4. All messages are delivered within a finite time. Suppose that a message
M waits forever in a node N and is constantly being overtaken by other
messages. Now, if the node is able to move some messages forward, it
will do so in first-come, first-served order. And, if it continues to do
so, it will eventually move the message M also. So, if one message gets
stuck in a node, all messages arriving in that node will eventually get
stuck there.

Since all messages pass through all nodes, they would all sooner or
later be stuck in the node N . But this cannot happen since we have
shown that at least one message always can make progress somewhere.
So the original assumption must be wrong: a message cannot wait
forever in a node.

The network will move each message forward with positive speed. And
since a message passes through a finite number of nodes with finite
buffer capacities it must arrive at its destination within a finite time.
The network is fair.

5. Transmission times are uniform. All messages travel the same dis-
tance through all nodes. The uniform transmission times simplify the
distribution of processes among the nodes.

The only exception is a transmission between two processes in the same
node. In this case, the request and the response both pass through all
nodes.

6. Space and time requirements are proportional to the size of the network.
Let n, c, and b be the number of nodes, channels, and buffer slots in the
whole network. To avoid deadlock we must have b > c. The simplest
choice is to give each node c/n+ 1 slots, making

b = c+ n

Let t be the service time per message in a single node and let T be
the total transmission time of a message on a single channel. Since a
message must pass through all nodes once, we have T ≥ nt. In the
worst case, all channels may transmit simultaneously from the same

NETWORK: A MULTIPROCESSOR PROGRAM 7

node. It will then take nt for the first message to pass through all
nodes. In addition, it will take the last node (c − 1)t to process the
other c− 1 messages. So we have

nt ≤ T ≤ (c+ n− 1)t

6 Program Structure

Each node contains a copy of the Network program that implements the
virtual channels. The program consists of a fixed number of processes that
communicate by monitors (Fig. 7).

m

m

m

m

m

m

m

m
m- - - -�

��

�
��

�
��

�
��

@
@I

@
@I

@
@R

@
@R

· · ·

· · ·P

P

P

M

M

P

P

M P

TASKS

INPUTS

READER BUFFER WRITER

BUS LINK BUS LINK

OUTPUTS

TASKS

Figure 7 Data flow among processes
and monitors in a single network node.

The task processes in a node will vary from one application to another.
The other program components are fixed. A task process calls a local input
monitor when it wishes to receive data on a channel. A request is now sent
through the network to the other end of that channel and the process is
delayed until a response comes back.

A task process calls a local output monitor when it wishes to send data
on a channel. The process is delayed until a request for data arrives on that
channel. A response is then sent through the network to the other end of
the channel.

Each node contains a reader process that receives messages from the
previous node through a bus link. If a message is a request or a response

8 PER BRINCH HANSEN

intended for its own node, the reader delivers it to the local output or input
monitor. The remaining transit messages are sent directly to a local buffer
monitor.

A writer process transmits messages from the local buffer through an-
other bus link to the next node.

The Appendix contains the complete text of the Network program writ-
ten in Concurrent Pascal.

7 Size and Performance

The Network program is about 250 lines long. It was written in less than
a week and was tested systematically in another week using a method de-
scribed in Brinch Hansen (1977b). No errors were found during testing. This
paper was written in a few days making the total programming effort about
two weeks.

The program has been running on two PDP 11/45 computers connected
by bus links. It requires about 2900 words of core store in each computer
(code 900 words and data 2000 words).

With 500 char/message the network has a maximum throughput of 30000
char/s. This rate is achieved only when the nodes spend all their time
transmitting data. In practice, the speed of this multiprocesor system will
be limited by the processing of messages performed by the task processes.
The performance is also influenced by the configuration of processes and
channels and their distribution among the network nodes.

8 Final Remarks

Many of these ideas are probably already described in the literature on com-
puter networks (with which I am not familiar). The purpose of this paper,
however, is not to advocate a particular method of network transmission.
On the contrary, there are good reasons to believe that real-time program-
ming can be simplified if process interactions can be tailored to the specific
needs of each application.

To illustrate this point: It may be necessary to add recovery procedures
to the present program to cope with transient hardware errors. Additional
buffers must be added to make it possible for a process to poll several chan-
nels. And channels with many senders are much more convenient to use if
distributed resources are scheduled among distributed processes. Finally, it

NETWORK: A MULTIPROCESSOR PROGRAM 9

seems clear that a completely different approach is needed to achieve high
performance and cope with persistent hardware errors. This all depends on
the requirements of particular applications.

This uncertainty about future needs makes it essential to have a method-
ology for the design of many different network programs. This paper shows
one example of how such programs can be made simple and reliable at low
cost by using an abstract language for modular multiprogramming.

Appendix: Program Text

This Appendix is intended for readers who are already familiar with the
literature on Concurrent Pascal (Brinch Hansen 1975, 1976, 1977a, 1977b).

The Network program identifies procesor nodes and virtual channels by
unique indices

type node = 1..nmax; channel = 1..cmax

The channels that originate or terminate in a node are identified by
channel sets

type channelset = set of channel

The number of nodes and channels available and the type of data items
transmitted through them may vary from one application to another

const nmax = . . . ; cmax = . . .
type item = . . .

A network message is either a request or a response for a particular
channel. If it is a response, the message includes a data item

type message = record
kind: (a request, a response);
link: channel;
contents: item

end

A task process can send and receive data items on one or more more
channels. These operations are implemented by output and input monitors
described later.

10 PER BRINCH HANSEN

type taskprocess =
process(inp: inputs; out: outputs; . . .);
var a, b: channel; x, y: item;
begin
. . . inp.receive(a, x) . . .
. . . out.send(b, y) . . .

end

A reader process inputs one message at a time from the previous node
through a bus link.

type readerprocess =
process(inpset, outset: channelset;

inp: inputs; out: outputs;
buf: buffer);

var m: message;
begin

cycle
input from buslink(m);
with m do

if (kind = a response) & (link in inpset)
then inp.response(m)

else if (kind = a request) & (link in outset)
then out.request(m)
else buf.send(m)

end
end

The reader uses two constants defining the set of input channels and the
set of output channels used by its node. If the node is the destination
of a message, the reader performs a response or request operation on it.
Otherwise, it sends the message through a local buffer to the next node.
These operations are implemented by input, output, and buffer monitors.
The details of input/output are described elsewhere (Brinch Hansen 1977b).

A writer process receives one message at a time from a local buffer and
outputs it to the next node through a bus link.

type writerprocess =
process(buf: buffer);
var m: message;
begin

NETWORK: A MULTIPROCESSOR PROGRAM 11

cycle
buf.receive(m);
output to buslink(m)

end
end

A buffer monitor implements two operations: Send delays a calling pro-
cess as long as the buffer is full. It then puts a message into the buffer
and continues the execution of another process (if there are any) waiting to
receive the message. Receive delays a calling process as long as the buffer is
empty. It then gets a message from the buffer and continues the execution
of another process (if there are any) waiting to send a message.

Sequences and queues with several processes waiting to send or receive
messages are not primitive concepts in Concurrent Pascal, but can be im-
plemented in the language (Brinch Hansen 1977b).

type buffer =
monitor
const bmax = . . . “cmax/nmax + 1”;
var buf: sequence [bmax] of message;

sender, receiver: queue;

procedure entry send(m: message);
begin

if buf.full then delay(sender);
buf.put(m);
continue(receiver)

end;

procedure entry receive(var m: message);
begin

if buf.empty then delay(receiver);
buf.get(m);
continue(sender)

end;

begin buf.reset end

An input monitor implements two operations: Receive sends a request
through a local buffer and delays a calling process until a response arrives on

12 PER BRINCH HANSEN

a given channel. Response delivers a data item on a channel and continues
the process that is waiting to receive it.

type inputs =
monitor(buf: buffer);
var receiver: array [channel] of queue;

this: message;

procedure entry receive(c: channel; var v: item);
begin

with this do
begin kind := a request; link := c end;

buf.send(this); delay(receiver[c]);
v := this.contents

end;

procedure entry response(m: message);
begin

this := m; continue(receiver[m.link])
end;

begin end

An output monitor implements two operations: Send delays a calling
process until a given channel is ready for transmission. It then sends a
data item through a local buffer. Request makes a channel ready to send
and continues a process (if there are any) waiting to send on that channel.
Initially no channels are ready.

type outputs =
monitor(buf: buffer);
var list: array [channel] of

record ready: boolean; sender: queue end;
c: channel; this: message;

procedure entry send(c: channel; v: item);
begin

with list[c] do
if not ready then delay(sender);

with this do

NETWORK: A MULTIPROCESSOR PROGRAM 13

begin
kind := a response; link := c;
contents := v

end;
buf.send(this);
list[c].ready := false

end;

procedure entry request(m: message);
begin

with list[m.link] do
begin ready := true; continue(sender) end

end;

begin
for c := 1 to cmax do list[c].ready := false

end

All instances of these program components are declared and initialized
by an initial process shown below. The definitions of channel sets and task
processes may vary from node to node.

var inpset, outset: channelset;
buf: buffer;
inp: inputs; out: outputs;
reader: readerprocess;
writer: writerprocess;
task1, task2, . . . : taskprocess

begin
inpset := [. . .]; outset := [. . .];
init buf, inp(buf), out(buf),

reader(inpset, outset, inp, out, buf),
writer(buf),
task1(inp, out, . . .),
task2(inp, out, . . .),
· · ·

end

14 PER BRINCH HANSEN

Acknowledgements

The ideas in this paper were developed in discussions with B. Heidebrecht,
D. Heimbigner, F. Stepczyk, and R. Vossler of TRW Systems, Redondo
Beach, CA. The program was tested at TRW’s Signal Processing Facility.

References

Brinch Hansen, P. 1973. Operating System Principles. Prentice Hall, Englewood Cliffs,
NJ, (July).

Brinch Hansen, P. 1975. The programming language Concurrent Pascal. IEEE Transac-
tions on Software Engineering 1, 2 (June), 199–207. Article 7.

Brinch Hansen, P. 1976. The Solo operating system. Software—Practice and Experience
6, 2 (April–June), 141–205. Articles 8–9.

Brinch Hansen, P. 1977a. Experience with modular concurrent programming. IEEE
Transactions on Software Enginering 3, 2 (March), 156–159. Article 11.

Brinch Hansen, P. 1977b. The Architecture of Concurrent Programs. Prentice Hall, En-
glewood Cliffs, NJ, (July).

Hoare, C.A.R. 1974. Monitors: An operating system structuring concept. Communica-
tions of the ACM 17, 10 (October), 549–557.

